Analysis of Algorithms I: All-Pairs Shortest Paths

Xi Chen

Columbia University
The All-Pairs Shortest Paths Problem. Input: A directed weighted graph $G = (V, E)$ with an edge-weight function $w : E \to \mathbb{R}$. Output: $\delta(u, v)$ for all $u, v \in V$, where $\delta(u, v)$ denotes the shortest-path weight from u to v. Depending on the weights of G: If only nonnegative weights are allowed, we can run Dijkstra’s algorithm $|V| = n$ times, once for each vertex $u \in V$: total running time is $O(n(m + n \log n))$. If we allow negative weights, then run Bellman-Ford n times: $O(n^2m)$. We will focus on the latter more general case, and give three algorithms with running time much better than $O(n^2m)$.

Introduction
Since we are dealing with directed graphs with general weights, recall that δ is well-defined over all pairs of vertices (u, v) only when there is no negative-weight cycle in G. We start by giving an algorithm, using Bellman-Ford, to test whether G has a negative cycle or not. Recall that if we run Bellman-Ford on G and a vertex $u \in V$, then it returns “negative cycle” if and only if there is a negative-weight cycle reachable from u.
Test if G has a negative-weight cycle:

1. Add a new vertex s and an edge (s, v) for every $v \in V$ with 0 weight. Call the new directed graph G'.

2. Run Bellman-Ford on G' and s: There is a negative cycle in G' reachable from s if and only if G has a negative cycle.

For the last statement: It is easy to see that if G has a negative cycle, then the same cycle must be reachable from s in G'. On the other hand, if G' has a negative cycle C then C cannot visit the source vertex s (why?) so it is also a negative cycle in G as well. This algorithm clearly has running time $O(nm)$.
Now assume G has no negative cycle. We start with Johnson’s algorithm for all-pairs shortest paths. The running time is

$$O(n^2 \lg n + nm)$$

Compare it with $O(nm)$ of Bellman-Ford for single-source shortest paths. When does it have essentially the same running time as Bellman-Ford? Johnson’s algorithm uses the so-called technique of reweighting: As mentioned earlier, if all the weights are nonnegative, we can compute δ by running Dijkstra n times:

$$O(n(m + n \lg n)) = O(n^2 \lg n + nm)$$
But our input graph G may have negative weights. In this case, Johnson’s algorithm uses Bellman-Ford to compute a new nonnegative weight function $w' : E \rightarrow \mathbb{R}_{\geq 0}$ such that

For any $u, v \in V$, it is easy to compute $\delta(u, v)$ using $\delta'(u, v)$, where δ' denote the shortest-path weight in G with w'.

Introduction
It will become clear later how easy it is to recover $\delta(u, v)$ from $\delta'(u, v)$. But if it is the case, then we get the following algorithm:

1. **Reweight w:** Compute (nonnegative) w' from w
2. **Run Dijkstra n times to compute $\delta'(u, v)$ for all $u, v \in V$**
3. **For all $u, v \in V$, compute $\delta(u, v)$ from $\delta'(u, v)$**
Here is how we compute w' (reweight): Run Bellman-Ford on G' (recall the construction of G' from G earlier) and s. Assume there is no negative cycle in G'. Then upon termination we get $\delta_{G'}(s, v)$ for all $v \in V$, where $\delta_{G'}(s, v)$ denotes the shortest-path weight from s to v in G' (note that it must be ≤ 0, why?). Finally for each edge $(u, v) \in E$, reweight $w(u, v)$ to be:

$$w'(u, v) = w(u, v) + \delta_{G'}(s, u) - \delta_{G'}(s, v)$$
Two things we need to check: (1) Is w' nonnegative? (2) How can we recover $\delta(u, v)$ from $\delta'(u, v)$ efficiently? For convenience we use $h(u)$ to denote $\delta_G'(s, u)$ for $u \in V$. First, we show that $w'(u, v) \geq 0$ for all $(u, v) \in E$. This is because δ_G' satisfies

$$\delta_G'(s, v) \leq \delta_G'(s, u) + w(u, v) \implies w(u, v) + h(u) - h(v) \geq 0$$

The second question is less trivial. Let $p = \langle v_0 v_1 \cdots v_k \rangle$ denote a path from $u = v_0$ to $v = v_k$ in G. We compare $w(p)$ and $w'(p)$:

$$w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}) \quad \text{and} \quad w'(p) = \sum_{i=0}^{k-1} w'(v_i, v_{i+1})$$
Plugging in the construction of w' from w, we have

$$w'(p) = \sum_{i=0}^{k-1} \left(w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}) \right)$$

$$= w(p) + h(v_0) - h(v_k) = w(p) + h(u) - h(v)$$

As a result:

$$\delta'(u, v) = \min_{p:u\rightsquigarrow v} w'(p) = \min_{p:u\rightsquigarrow v} \left(w(p) + h(u) - h(v) \right)$$

$$= h(u) - h(v) + \min_{p:u\rightsquigarrow v} w(p) = h(u) - h(v) + \delta(u, v)$$
To summarize, here is Johnson’s algorithm:

1. Construct G' from G
2. Bellman-Ford on G' and s to get $h(v) = \delta_{G'}(s, v)$, $\forall v \in V$
3. For each edge $(u, v) \in E$ do

 4. set $w'(u, v) = w(u, v) + h(u) - h(v)$
5. Run Dijkstra n times to compute $\delta'(u, v)$ for all $u, v \in V$
6. For all $u, v \in V$ do

 7. set $\delta(u, v) = \delta'(u, v) + h(v) - h(u)$

Total running time: $O(nm + n(m + n \lg n)) = O(nm + n^2 \lg n)$.

Introduction
Next we present two algorithms based on Dynamic Programming. In both algorithms, we assume there is no negative cycle in G so $\delta(u, v)$ is always well-defined. In both algorithms, we fill up a 3-dimensional table of size n^3, but based on different recursive formulas. The cells of the two tables also have different meanings. From now on, we assume $V = \{1, \ldots, n\} = [n]$ and let $W = (w_{ij})$ denote the following $n \times n$ matrix:

$$w_{ij} = \begin{cases}
0 & \text{if } i = j \\
 w(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
+\infty & \text{if } i \neq j \text{ and } (i, j) \notin E
\end{cases}$$
The first algorithm is based on the following recursive formula: Given \(i, j \in V \) and \(t \geq 1 \), let \(d_{ij}^{(t)} \) denote the minimum weight of any path from \(i \) to \(j \) that contains at most \(t \) edges. Thus,

\[
d_{ij}^{(1)} = w_{ij}
\]

For each \(t \geq 1 \) we also define the following \(n \times n \) matrix \(D^{(t)} \): The \((i,j)\)th entry of \(D^{(t)} \) is exactly \(d_{ij}^{(t)} \), \(i, j \in V \).
Now it becomes clear that in the DP algorithm, we will start with $D^{(1)}$ and use it to compute $D^{(2)}$, and then $D^{(3)}$, and so on and so forth. Before giving the recursive formula for computing $D^{(t)}$ from $D^{(t-1)}$, we first answer the following question: When should this algorithm stop? The answer is $t = n - 1$ because we have

$$\delta(i, j) = d_{ij}^{(n-1)}$$

This follows from the fact that, because there is no negative cycle there must be a simple path from i to j with at most $n - 1$ edges. Now our goal is clear: start from $D^{(1)} = W$ and compute $D^{(n-1)}$.
Assume we have computed $D^{(t-1)}$ for some $t \geq 2$. How can we use it to compute $D^{(t)}$ efficiently? Here is a recursive formula:

$$d_{ij}^{(t)} = \min_{k \in V} \left\{ d_{ik}^{(t-1)} + w_{kj} \right\}$$ \hspace{1cm} (1)

Intuitively, this formula says that to get $d_{ij}^{(t)}$, we just need to enumerate all possible predecessors k of j. For each k, concatenate a shortest path from i to k, that contains at most $t - 1$ edges, and (k, j) of weight w_{kj}. Taking the minimum gives us $d_{ij}^{(t)}$.

Introduction
The proof is very simple. Let \(p = \langle i_0 i_1 \cdots i_{\ell-1} i_\ell \rangle \) denote a shortest-path from \(i \) to \(j \) of length at most \(t \) so that

\[
d_{ij}^{(t)} = w(p)
\]

Let \(p' = \langle i_0 i_1 \cdots i_{\ell-1} \rangle \) and \(s = i_{\ell-1} \), then (why?)

\[
d_{ij}^{(t)} = w(p) = w(p') + w_{sj} \geq d_{is}^{t-1} + w_{sj}
\]

This implies that

\[
d_{ij}^{(t)} \geq \min_{k \in V} \left\{ d_{ik}^{(t-1)} + w_{kj} \right\}
\]

The other direction is even simpler.

Introduction
This immediately gives us the following DP algorithm:

1. set $D^{(1)} = W$
2. for t from 2 to $n - 1$ do
3. for i from 1 to n do
4. for j from 1 to n do
5. set $d_{ij}^{(t)} = \min_{k \in V} \{d_{ik}^{(t-1)} + w_{kj}\}$
6. return $D^{(n-1)}$

The running time is clearly $\Theta(n^4)$. We next give a connection to matrix multiplication to reduce its running time to $O(n^3 \log n)$.
To this end, recall that given three $n \times n$ matrices:

$$A = (a_{ij}), \quad B = (b_{ij}) \quad \text{and} \quad C = (c_{ij})$$

$C = A \cdot B$ means the following equation for all $i, j \in [n]$:

$$c_{ij} = \sum_{k \in [n]} a_{ik} \cdot b_{kj}$$
Now we define the so-called “funny” multiplication of \(A \) and \(B \):

\[
\mathbf{C} = \mathbf{A} \otimes \mathbf{B}, \quad \text{where} \quad c_{ij} = \min_{k \in [n]} \{ a_{ik} + b_{kj} \}
\]

Basically we replace “\(\cdot \)” by “\(+ \)” and replace \(\sum \) by \(\min \). It is easy to check that this “funny” operation remains associative:

\[
\mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}) = (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C}
\]
Using the “funny” multiplication and (1), we have for any $t \geq 2$

$$D^{(t)} = D^{(t-1)} \otimes W$$

Because $D^{(1)} = W$, we have

$$D^{(t)} = \left(\left(\left(W \otimes W\right) \otimes W\right) \otimes \cdots \otimes W\right) \otimes W$$

Using the technique of repeated squaring, we can compute the matrix $D^{(n-1)}$ more efficiently as follows:
Assume $n - 1$ is a power of 2, then starting from $D^{(1)} = W$:

1. $D^{(2)} = D^{(1)} \otimes D^{(1)}$
2. $D^{(4)} = D^{(2)} \otimes D^{(2)}$
3. \ldots
4. $D^{(n-1)} = D^{(n-1)/2} \otimes D^{(n-1)/2}$

So overall we only need to perform $\log n$ “funny” multiplications of $n \times n$ matrices, instead of n. Each “funny” multiplication, by its definition, can be done in $O(n^3)$ time. So the total running time is $O(n^3 \log n)$. Quick question: What if $n - 1$ is not a power of 2? A more important question: Where did we use the property that \otimes is an associative operation? Actually all the equations above, except the first one, require the associative property (why?).
Can we continue to improve it and get an algorithm with running time $O(n^3)$? The previous naive DP algorithm takes $O(n^4)$ running time because to compute each entry of the 3-dimensional table, the recursive formula needs to compute the minimum of n sums. Next we show a different DP algorithm. While the table is still 3-dimensional and of size n^3, we redefine the meaning of each entry and show that the recursive formula becomes much simpler and each entry can be computed in $O(1)$ time, leading to a $O(n^3)$ DP algorithm: the Floyd-Warshall algorithm. This is a good example where different recursive formulas lead to DP algorithms with different running time.
Here is the most tricky part of Floyd-Warshall: What do we store in the 3-dimensional table? Recall $V = \{1, 2, \ldots, n\} = [n]$. Given $i, j \in n$ and $k : 0 \leq k \leq n$, let $c_{ij}^{(k)}$ denote the weight of a shortest path from i to j in which all intermediate vertices (except i and j themselves) are in the set $\{1, 2, \ldots, k\}$. In particular, for $k = 0$ we have $c_{ij}^{(0)} = w_{ij}$ because the path can only visit i and j. For $k = n$,

$$d_{ij}^{(n)} = \delta(i, j)$$

So the goal of Floyd-Warshall is to compute $d_{ij}^{(n)}$ for all $i, j \in V$.

Introduction
For any $k \geq 1$, we have the following recursive formula for $c_{ij}^{(k)}$:

$$c_{ij}^{(k)} = \min \left(c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \right)$$

One direction, $c_{ij}^{(k)} \leq \min \left(c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \right)$, is trivial.
We prove the other direction: Let p be a shortest path from i to j for which all intermediate vertices come from $\{1, \ldots, k\}$, then

$$c^{(k)}_{ij} = w(p) \geq \min \left(c^{(k-1)}_{ij}, c^{(k-1)}_{ik} + c^{(k-1)}_{kj} \right)$$

To this end, we consider the following two cases. If k is not an intermediate vertex of p, then by definition we have (why?)

$$w(p) \geq c^{(k-1)}_{ij}$$
If k is actually an intermediate vertex of p, then let p' denote the subpath of p from i to k and let p'' denote the subpath from k to j. Then by definition we have (why?)

$$w(p') \geq c_{ik}^{(k-1)} \quad \text{and} \quad w(p'') \geq c_{kj}^{(k-1)}$$

and thus, we get

$$c_{ij}^{(k)} = w(p) = w(p') + w(p'') \geq c_{ik}^{(k-1)} + c_{kj}^{(k-1)}$$

This finishes the proof of the correctness of the recursive formula. Finally we present the Floyd-Warshall algorithm:
Floyd-Warshall:

1. for all $i, j \in [n]$ do
2. \hspace{1em} set $c_{ij}^{(0)} = w_{ij}$
3. for k from 1 to n do
4. \hspace{1em} for i from 1 to n do
5. \hspace{2em} for j from 1 to n do
6. \hspace{3em} set $c_{ij}^{(k)} = \min (c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)})$
7. return $(c_{ij}^{(n)})$

The running time is $\Theta(n^3)$. Again, the improvement is due to the fact that each entry only takes $O(1)$ time using the new formula.