Analysis of Algorithms I: Maximum Flow

Xi Chen

Columbia University
In this class, we start by introducing the maximum flow problem. We then present the Ford-Fulkerson method based on the Max-Flow Min-Cut Theorem. In the next class, we will discuss one particular implementation of the Ford-Fulkerson method: the Edmonds-Karp algorithm for the maximum flow problem.
Let $G = (V, E)$ be a directed graph with positive edge weights $c : E \rightarrow \mathbb{R}_{>0}$. For now we assume all the weights are positive integers. We also assume G satisfies the following condition:

$$G \text{ is reduced: If } (u, v) \in E \text{ then } (v, u) \notin E.$$

We make this assumption mainly to simplify the analysis. We will see shortly how to work around this restriction. There are two distinguished vertices in G: a vertex s called the source and a vertex t called the sink. (Note that here s may have incoming edges and t may have outgoing edges.)
Consider G as a computer network and we want to send data from s to t. An edge from u to v with weight $c(u, v) > 0$ means we can send data from u to v at a maximum rate of $c(u, v)$ Mbps. Given G, what is the maximum rate of sending data from s to t? This is what we call the maximum flow problem. Since we want to send data from s to t, we may well assume that every $v \in V$ lies on a path from s to t. Otherwise, we can remove v from the graph.
Given G, c (positive edge weights), s (source) and t (sink), a flow f in G is a nonnegative function $f : E \rightarrow \mathbb{R}_{\geq 0}$ such that

1. **Capacity constraint:** For every $(u, v) \in E$,

 $$0 \leq f(u, v) \leq c(u, v)$$

2. **Flow conservation constraints:** For every $u \in V - \{s, t\}$,

 $$\sum_{v: (u, v) \in E} f(u, v) = \sum_{v: (v, u) \in E} f(v, u)$$

For the second cond., consider a router u in a network. Its out-flow (sum on the left) should be equal to its in-flow (sum on the right).
The value of a flow f, denoted by $|f|$, is then defined as

$$|f| = \sum_{v:(s,v)\in E} f(s,v) - \sum_{v:(v,s)\in E} f(v,s)$$

This is what we call the net-out-flow of s. It is not surprising that the net-out-flow of s is always the same as the net-in-flow of t. Intuitively this is because all other vertices have in-flow equals out-flow. So all the packages that s sends out must end up at t. Formally, we have the following equation (try to prove it):

$$|f| = \sum_{v:(v,t)\in E} f(v,t) - \sum_{v:(t,v)\in E} f(t,v)$$
Here is a proof: There are two ways to write $\sum_{(u,v) \in E} f(u, v)$:

$$
\sum_{u \in V} \sum_{v:(u,v) \in E} f(u, v) = \sum_{u \in V} \sum_{w:(w,u) \in E} f(w, u)
$$

This implies that

$$
\sum_{u \in V} \text{out-flow} (u) = \sum_{u \in V} \text{in-flow} (u)
$$

As $\text{out-flow} (u) = \text{in-flow} (u)$ for all $u \in V - \{s, t\}$, we have

$$
\text{out-flow} (s) + \text{out-flow} (t) = \text{in-flow} (s) + \text{in-flow} (t)
$$

So the net-out-flow of s is the same as the net-in-flow of t.

Introduction
In the maximum flow problem, we are asked to find a flow f that maximizes $|f|$. Before we present the Ford-Fulkerson method, it is worth pointing out that the restriction of G being reduced (i.e., $(u, v) \in E$ implies $(v, u) \in E$) is without loss of generality.

Notation: Given a graph $G = (V, E)$, if both $(u, v) \in E$ and $(v, u) \in E$ then we call them two antiparallel edges.
To see this, let G be a graph with antiparallel edges. We modify G to get G' as follows: For every two antiparallel edges (u, v) and $(v, u) \in E$, add a new vertex w and replace (u, v) with (u, w) and (w, v). Also set $c(u, w) = c(w, v)$ to be the capacity $c(u, v)$ of the original edge (u, v). It is clear that the new graph G' has no antiparallel edges and thus, is reduced. Also G' is essentially equivalent to G: a maximum flow in G' has the same value as a maximum flow in G. (Actually, there is clearly a one-to-one correspondence between flows in G' and flows in G.) This implies that any algorithm for finding a maximum flow in a reduced graph can be used to solve the same problem over general graphs.
We now describe the Ford-Fulkerson method. It is in some sense a greedy algorithm: Start with the zero flow: \(f(u, v) = 0 \) for all \((u, v) \in E\). Repeatedly increase the value of \(f \) by finding an “augmenting path” from \(s \) to \(t \) in the “residual graph” \(G_f \), until no such path exists. We will see that in each round, the value of \(f \) strictly increases. But the flow on a particular edge of \(G \) may increase or decrease! To describe the Ford-Fulkerson method, we need to define “residual graph” and “augmenting path”.
Let f be a flow in G. The key idea is the following. Let

$$\langle v_0v_1\cdots v_k \rangle$$

be a sequence of vertices (not necessarily a path in G!) starting from $v_0 = s$ and ending at $v_k = t$. We call it a “good” sequence if it is simple (no vertex appears twice) and for each $i \in [0 : k - 1]$, one of the following two holds:

1. Either $(v_i, v_{i+1}) \in E$ and is not saturated:

 $$f(v_i, v_{i+1}) < c(v_i, v_{i+1})$$

2. Or $(v_{i+1}, v_i) \in E$ and $f(v_{i+1}, v_i)$ is positive

Introduction
Given a good $\langle v_0 v_1 \cdots v_k \rangle$, we can modify f as follows: Let

$$\delta = \min_{i \in [0:k-1]} \left\{ \begin{array}{ll}
 c(v_i, v_{i+1}) - f(v_i, v_{i+1}) & \text{if } (v_i, v_{i+1}) \in E \\
 f(v_{i+1}, v_i) & \text{if } (v_{i+1}, v_i) \in E
 \end{array} \right.$$

Then 1) increase the flow $f(v_i, v_{i+1})$ of each $(v_i, v_{i+1}) \in E$ by δ; and 2) decrease the flow $f(v_{i+1}, v_i)$ of each $(v_{i+1}, v_i) \in E$ by δ. Denote the new flow by f'. We now show that the new flow f' is still feasible and its value increases by δ. To see this, first of all it is easy to check that f' satisfies the capacity constraint:

$$0 \leq f'(u, v) \leq c(u, v), \quad \text{for all } (u, v) \in E$$
Also f' satisfies the flow conservation property. For each v_i in the sequence, where $i \in [1 : k - 1]$, we have the following four cases:

1. If $(v_{i-1}, v_i) \in E$ and $(v_i, v_{i+1}) \in E$, then both the in-flow and out-flow of v_i increase by δ

2. If $(v_{i-1}, v_i) \in E$ and $(v_{i+1}, v_i) \in E$, then both the in-flow and out-flow of v_i remain the same

3. If $(v_i, v_{i-1}) \in E$ and $(v_i, v_{i+1}) \in E$, then both the in-flow and out-flow of v_i remain the same

4. If $(v_i, v_{i-1}) \in E$ and $(v_{i+1}, v_i) \in E$, then both the in-flow and out-flow of v_i decrease by δ

Finally, it is easy to verify that $|f'| = |f| + \delta$.
The message here is that to improve the value of f, sometimes we need to decrease the flow along an edge $(u, v) \in E$. This is kind of anti-intuitive so make sure to think it through before moving on. Now we can informally describe Ford-Fulkerson: Start with the zero flow; Repeatedly find a good sequence and use it to improve f, until no such sequence exists. To better describe this method, we introduce the concept of residual graphs.
Let f be a flow in G. The residual graph $G_f = (V, E_f)$ with respect to f has the following directed edges. Each edge in E_f also has a positive residual capacity c_f defined as follows:

1. **Forward edges:** $(u, v) \in E_f$ if $(u, v) \in E$ and is not saturated in f: $f(u, v) < c(u, v)$. The residual capacity of $(u, v) \in E_f$ is set to be $c_f(u, v) = c(u, v) - f(u, v)$. The residual capacity tells us how much we can increase the flow along $(u, v) \in E$.

2. **Reverse edges:** $(v, u) \in E_f$ if $(u, v) \in E$ and $f(u, v) > 0$. The residual capacity of $(v, u) \in E_f$ is $c_f(v, u) = f(u, v)$. The residual capacity tells us how much we can decrease the flow along the original edge $(u, v) \in E$.

Introduction
It is clear that G_f in general is not reduced, and has a lot of anti-parallel edges. Key observation: $\langle v_0 v_1 \cdots v_k \rangle$ is a good sequence if and only if it is a simple path from s to t in G_f. We will from now on refer to a simple path $p = \langle v_0 v_1 \cdots v_k \rangle$ from s to t in G_f as an augmenting path. Let the residual capacity of p be

$$c_f(p) = \min \left\{ c_f(u, v) : (u, v) \text{ is on } p \right\} > 0$$

Then we can modify f to improve its value by $c_f(p)$, in the same way we did using a good sequence (again, an augmenting path is essentially a good sequence defined earlier, with a fancy name).
More exactly, for each edge \((v_i, v_{i+1}) \in E_f\) in \(p\), two cases:

1. If \((v_i, v_{i+1})\) is a forward edge, increase \(f(v_i, v_{i+1})\) by \(c_f(p)\)
2. If \((v_i, v_{i+1})\) is a reverse edge, decrease \(f(v_{i+1}, v_i)\) by \(c_f(p)\)

By the end we get a new flow \(f\) with its value increased by \(c_f(p)\). This gives us a round-by-round method to increase the value of the current flow \(f\). The million-dollar question is then the following: When Ford-Fulkerson stops, meaning there exists no augmenting path in the current residual graph \(G_f\), is \(f\) optimal? The answer is yes! The Ford-Fulkerson method always returns a maximum flow upon termination.
To prove it, recall that an s-t cut of $G = (V, E)$ is a partition of V into two sets S and $T = V - S$ such that $s \in S$ and $t \in T$. Given a cut (S, T), we define the capacity of (S, T) to be

$$c(S, T) = \sum_{(u, v) \in E : u \in S, v \in T} c(u, v)$$

Minimum cut: an s-t cut (S, T) of minimum capacity. The first lemma we prove is simple:
Lemma

Max flow is \(\leq \) Min cut: \(\max f |f| \leq \min_{(S, T)} c(S, T) \).

Proof: Let \(f \) be a maximum flow in \(G \), and let \((S, T)\) be “any” \(s-t \) cut. Then it is easy to show (Prove it by yourself) that

\[
|f| = \sum_{(u,v) \in E: u \in S, v \in T} f(u, v) - \sum_{(u,v) \in E: u \in T, v \in S} f(u, v)
\]

\[
\leq \sum_{(u,v) \in E: u \in S, v \in T} c(u, v) = c(S, T)
\]

It follows that max flow is \(\leq \) min cut.
Also note that given f and (S, T), we have $|f| = c(S, T)$ if and only if $f(u, v) = c(u, v)$ for all $(u, v) \in E : u \in S, v \in T$ and $f(u, v) = 0$ for all $(u, v) \in E : u \in T, v \in S$. Now consider a flow f in G such that there is no augmenting path in G_f. This means t is not reachable from s. Let S denote the set of all vertices reachable from s, and $T = V - S$. It is clear that (S, T) is an s-t cut because $t \in T$.

Introduction
As vertices in T are not reachable from S, none of the edges in E_f goes from a vertex in S to a vertex in T. This implies that

1. For every $(u, v) \in E$ such that $u \in S$ and $v \in T$, (u, v) must be saturated in f: $f(u, v) = c(u, v)$. Otherwise $(u, v) \in E_f$.

2. For every $(u, v) \in E$ such that $u \in T$ and $v \in S$, we must have $f(u, v) = 0$. Otherwise we have $(v, u) \in E_f$.

This implies that $|f| = c(S, T)$ and thus,

$$|f| = c(S, T) \geq \min_{(S', T')} c(S', T')$$

and f is a max flow because $\max_f |f| \leq \min_{(S', T')} c(S', T')$.

Introduction
We summarize it in the following Max-Flow Min-Cut theorem:

Theorem

Max flow equals min cut:

\[
\max_{f} |f| = \min_{(S, T)} c(S, T)
\]

Moreover, if \(f\) is a flow in \(G\) such that \(G_f\) has no augmenting path, then \(f\) must be a maximum flow.
Now we can describe the Ford-Fulkerson method formally:

1. set f to be the zero flow
2. while there exists a simple path p from s to t in G_f do
3. use p to modify f and increase its value by $c_f(p)$
It stops within a finite number of rounds because each while loop, the value of f increases by at least 1 (since we assumed that all the capacities are positive integers). If f^* is a maximum flow in G, then Ford-Fulkerson executes the while loop at most $|f^*|$ times. So the total running time is $O((n + m) \cdot |f^*|)$ if we use BFS or DFS to find a path from s to t in the residual graph G_f each round. As we assumed that all vertices are reachable from s,

$$m = |E| \geq |V| - 1 = n - 1$$

and thus, $O(n + m) = O(m)$ so the running time is $O(m \cdot |f^*|)$.
It turns out that there are bad examples for which Ford-Fulkerson does need to execute the while loop for $\Omega(m \cdot |f^*|)$ many times. See one such example in Figure 26.7 on page 728. A more efficient implementation of Ford-Fulkerson, as we will see in the next class, is the Edmonds-Karp algorithm. The only difference is that in each while loop, we do not just pick an arbitrary augmenting path in G_f. Instead, we always pick one that minimizes the number of edges. We will show that by doing this, the while loop is executed at most $O(nm)$ times so the total running time is $O(nm^2)$.