1. Prove the following useful property of a binary search tree (with distinct keys):

Property 1. Let \(x \) be a node in a BST \(T \). Let \(\text{max} \) and \(\text{min} \) denote the largest and smallest keys in the subtree rooted at \(x \), respectively. For any node \(y \) outside the subtree rooted at \(x \), show that

\[
\text{either } y.\text{key} > \text{max} \quad \text{or} \quad y.\text{key} < \text{min}
\]

This implies that if there is a key \(k \) in the tree that satisfies \(\text{min} \leq k \leq \text{max} \) then it must lie inside the subtree rooted at \(x \). (Here the subtree rooted at \(x \) includes \(x \) itself.)

Use it to solve Exercise 12.2-5, 12.2-6 and 12.2-9 on page 293. In all three exercises, we assume the BST has distinct keys.

2. Problem 13-2: Join operation. For a): you only need to answer the following two questions: 1) Let \(T \) be a red-black tree in which the root has black height \(T.\text{bh} \). Then after an insertion, \(T.\text{bh} \) either stays the same or increases by 1. Describe the scenario when it increases by 1. 2) If a node \(z \) has black height \(h \), use \(O(1) \) time to compute the black height of \(z \)'s children. Skip e) and f). Replace d) by the following: If \(T_1.\text{bh} = T_2.\text{bh} \), what color should we make \(x \) to get a red-black tree? If \(T_1.\text{bh} > T_2.\text{bh} \), what color should we make \(x \) so that properties 1, 2, 3 and 5 are maintained? “Briefly” describe how to enforce property 4 in \(O(\lg n) \) time.

3. Exercise 14.1-8 on page 345. (Hint: Each chord \(c = (c_1, c_2) \) has two endpoints \(c_1, c_2 \in [0, 2\pi) \), where \(c_1 < c_2 \). Given two chords \(c = (c_1, c_2) \) and \(c' = (c'_1, c'_2) \), how do we determine they intersect inside the circle or not? Also if \(c \) is one of the shortest chords, how many chords does \(c \) intersect?)

4. Exercise 14.3-6 on page 354. You only need to describe the following key points: 1). What extra information to store in each node? 2). With this additional information in each node, how to answer Min-GAP efficiently? 3). Use Theorem 14.1 to prove that insertion and deletion of a node can still be done in \(O(\lg n) \) time: Show that all the extra information for a node \(x \) can be derived from the information stored in its two children in \(O(1) \) time.

5. Exercise 16.1-5 on page 422 and Exercise 16.3-5 on page 436. (Hint for 16.1-5: You may not want to be greedy here.)