We discuss the second application of Depth-first Search (DFS): Strongly connected components. We start with some definitions. Let $G = (V, E)$ be a directed graph. We say C is a strongly connected component (SCC) of V if it is a maximal set of vertices such that every two vertices $u, v \in C$ are mutually reachable: there is a path from u to v as well as a path from v to u. The word “maximal” basically means for any $u \in C$ and $w \notin C$, u and w are not mutually searchable. Check Appendix B.
Every directed $G = (V, E)$ can be partitioned into pairwise disjoint SCCs, just like connected components in an undirected graph:

$$C_1, C_2, \ldots, C_k,$$ for some $k \geq 1$

The SCC problem is then the following:

Given a directed graph $G = (V, E)$, find its SCCs
Given G, let $G^T = (V, E^T)$ denote the reverse graph of G:

$$E^T = \{(v, u) : (u, v) \in E\}$$

It is easy to see that, by the definition of G^T, v is reachable from u in G^T if and only if u is reachable from v in G. Quick question: Given the list representation of G, how to construct the list representation of G^T in linear time?
First try: here is a straight-forward SCC algorithm using DFS:

1. pick an arbitrary vertex \(u \) from \(V \)
2. call DFS-Visit \((G, u)\) to get \(R \): vertices reachable from \(u \) in \(G \)
3. call DFS-Visit \((G^T, u)\) to get \(R' \): vertices reachable from \(u \) in \(G^T \) or equivalently, \(v \in R' \) iff \(u \) is reachable from \(v \) in \(G \)
4. output \(R \cap R' \) (show that this is the SCC that contains \(u \))
5. remove \(R \cap R' \) from \(G \) and repeat, until \(G \) is empty
However, its worst-case running time is not good. Each call to DFS-Visit costs $O(n + m)$ so the total running time is

$$O(n(n + m))$$

There are also worst-case examples to show that $\Omega(nm)$ time is necessary (try to construct one by yourself). We will show that there is actually a $O(n + m)$ linear-time algorithm for the SCC problem!!! Much more efficient.
We start with the following lemma about the SCCs of G:

Lemma

Let C and C' be two SCCs of G. If there is an edge from C to C' in G, then there is no edge from C' to C.

Otherwise, show that $u \in C$ and $v \in C'$ are mutually reachable and thus, one can merge C and C' to get a larger SCC, contradiction.
This leads us to define the component graph G_{SCC} of G: each SCC of G corresponds to a vertex in G_{SCC} so the vertices of G_{SCC} are

$$\{C_1, \ldots, C_k\}, \quad \text{where } C_1, \ldots, C_k \text{ are the SCCs of } G$$

and (C_i, C_j) is an edge in G_{SCC} if there is an edge from C_i to C_j in G. Given this definition, it is easy to prove the following lemma:

Lemma

The component graph G_{SCC} of G must be a DAG.

Quick proof: Assume there is a cycle $C_1 C_2 \cdots C_\ell = C_1$ of length $\ell \geq 2$ in G'. Then it can be shown that any two vertices in $\bigcup_{i=1}^{\ell} C_i$ are indeed mutually reachable in G and thus, one can merge $C_1, \ldots, C_{\ell-1}$ to obtain an even larger SCC, contradiction.
We know that as a DAG, G_{SCC} must have at least one source (a vertex with no incoming edges) and at least one sink (a vertex with no outgoing edges). We call an SCC C of G a source (sink) SCC if C corresponds to a source (sink) vertex in G_{SCC}. So C is a sink SCC of G if there is no edge from C to other SCCs of G. The following lemma is the key idea behind the linear-time algorithm:

Lemma (3)

Let C be any sink SCC of G and u be any vertex in C. Then C is exactly the set of vertices reachable from u in G. Therefore, to compute C, one only needs to compute the set of vertices reachable from u in G by making a call to DFS-Visit(G, u).
Before proving Lemma 3, it suggests the following algorithm:

1. find a vertex $u \in V$ in a sink SCC of G
2. call DFS-Visit (G, u) to get R: vertices reachable from u
3. output R, the SCC that contains u according to Lemma 3
4. remove R from G and repeat, until G is empty

Clearly the main problem left is how to find a vertex u in a sink SCC of G. Another subtle problem is, after removing a SCC from G, how to find a vertex in a sink SCC of the remaining graph.
Proof of Lemma 3: Let R denote the set of vertices reachable from u in G. By definition we have $C \subseteq R$ because $v \in C$ means not only v is reachable from u but also u is reachable from v. We need to show $C = R$ when C is a sink SCC of G. Show that if $v \notin C$, then v is not reachable from u in G, by using the assumption that C is a sink SCC.
Now we discuss how to find a vertex in a sink SCC of G. Note that C is an SCC of G if and only if it is an SCC of G^T; C is a sink SCC of G if and only if it is a source SCC of G^T. So it suffices to find a vertex in a source SCC of G^T efficiently. The following lemma shows how: We start by running DFS on G^T! Upon termination, let $u.f$ denotes the finish time of u in DFS(G^T). (We use $u.f$ to denote the finish time in DFS(G^T) in the rest of the note.)

Lemma (4)

*The vertex u with the largest finish time $u.f$ must belong to a source SCC of G^T and thus, a sink SCC of G.***
Lemma 4 is a corollary of the following stronger lemma (why?): Given an SCC C of G^T (and G as well), we use $f(C)$ to denote

$$f(C) = \max_{u \in C} \{ u.f \}$$

the maximum finish time of vertices in C. Again, remember that $u.f$ denotes the finish time of u in DFS(G^T). (Note the subtle difference between the presentations of the note and textbook.)

Lemma (5)

Let C and C' be two SCCs of G^T (and G as well). If there is an edge from C to C' in G^T, then we must have $f(C) > f(C')$.

Introduction
Consider the following two cases: In $\text{DFS}(G^T)$, C is visited before C' or C' is visited before C. For the first case, let $u \in C$ be the first vertex DFS discovers among $C \cup C'$. Then at the time when u is discovered, all vertices in $C \cup C'$ are white and thus, there is a white path from u to every vertex in $C \cup C'$ (why? use the assumption that there is an edge from C to C' in G^T). Therefore, by the White-Path theorem, all vertices in $C \cup C'$ are descendants of u in the depth-first forest and thus, by the Parenthesis lemma u has the largest finish time and $f(C) > f(C')$ because $u \in C$.
The other case: Assume $u \in C'$ is the first vertex DFS discovers among $C \cup C'$. At the time when u is discovered, all vertices in C' are white and thus, there is a white path from u to every vertex in C'. Therefore, by the White-Path theorem, u has the largest finish time in C' and $f(C') = u.f$. However, every vertex $v \in C$ is not reachable from u in G^T (why?). Because $v \in C$ is not discovered at the time $u.d$, it remains white at the time $u.f$ (why? use the White-Path theorem). Therefore, $v.d > u.f$ and $f(C) > f(C')$.

From Lemma 5, we can simply call $\text{DFS}(G^T)$ to find the vertex u with the largest finish time $u.f$. It must belong to a source SCC of G^T and thus, a sink SCC of G. By Lemma 3, $\text{DFS-Visit}(G, u)$ returns the SCC C that contains u. But how do we continue after removing C from G? Do we need to call DFS on the new graph?
No! Here is the technically most important idea in the linear-time algorithm for SCC. After we found the first SCC and delete it from G, it can be shown that the vertex v with the largest finish time $v.f$ from DFS(G^T) among the remaining vertices must belong to a sink SCC C' of the remaining graph, denoted by G'. Therefore, we can just call DFS-Visit(G', v) to get the SCC C' that contains v, which is the second SCC of G we find simply because an SCC of G' is also an SCC of G. We can repeat to find the third SCC of G, the fourth, and so on. Note that we only call DFS(G^T) once.
Why does v, the vertex with the largest finish time $v.f$ in the remaining graph G', after deleting the first SCC C we found, belong to a sink SCC C' of G'? This follows from Lemma 5: If there is another SCC C^* in G' with an edge from C' to C^* in G', then there is an edge from C^* to C' in G^T and thus,

$$f(C^*) > f(C')$$

This contradicts the assumption that $v \in C'$ has the largest finish time among vertices in G'. Similarly, by induction one can show that after removing the second SCC, the vertex with the largest finish time in the remaining graph belongs to a sink SCC of the remaining graph, and so on.
To summarize, here is the linear-time algorithm for SCC:

1. construct the adjacency list representation of G^T from G
2. call DFS(G^T) to get a reordering S (a linked list) of the vertices V with their finish times sorted from large to small
3. while G and S are not empty do
 4. let u be the first vertex in S
 5. call DFS-Visit(G, u) to get R: vertices reachable from u
 6. R must be the SCC that contains u
 7. remove R from G and S
Both line 1 and line 2 can be done in time $O(n + m)$ (for line 2, recall the linear-time topological sort algorithm). To see why the while-loop takes time $O(n + m)$, note that essentially it is DFS(G) with vertices in the for-loop of DFS(G) ordered as in S.