We start with some notation. Let $G = (V, E)$ denote a weighted directed graph. The weight of $(u, v) \in E$ is $w(u, v)$. The weight of a path $p = \langle v_0, v_1, \ldots, v_k \rangle$ is the sum of the weights of its edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
Given \(u, v \in V \), we define the shortest-path weight from \(u \) to \(v \):

\[
\delta(u, v) = \min \{ w(p) : \text{any path from } u \text{ to } v \}
\]

and \(\delta(u, v) = +\infty \) if \(v \) is not reachable from \(u \). Usually we simply refer to \(\delta(u, v) \) as the distance from \(u \) to \(v \). In this class, we focus on the single-source shortest-paths problem: Given a weighted directed graph \(G = (V, E) \) and a source vertex \(s \in V \), compute \(\delta(s, v) \) and find a shortest path from \(s \) to \(v \), for all \(v \in V \). In the next class, we discuss the all-pairs shortest-paths problems. While the latter can be solved by running a single-source algorithm once for each vertex, usually it can be solved faster.
Some basic properties of $\delta(s, v)$:

1. **Triangle inequality:**

 $$\delta(u, v) \leq \delta(u, y) + \delta(y, v), \quad \text{for all } u, y, v \in V$$

 Implies $\delta(s, v) \leq \delta(s, u) + w(u, v)$ for any $(u, v) \in E$

2. **Subpath property:** If $p = \langle v_0, v_1, \ldots, v_k \rangle$ is a shortest path from v_0 to v_k, then for any $i, j : 0 \leq i \leq j \leq k$,

 $$p_{i,j} = \langle v_i, v_{i+1}, \ldots, v_j \rangle$$

 must be a shortest path from v_i to v_j.
We start by discussing the case when all weights are nonnegative (e.g., distances between cities). Dijkstra’s algorithm: Very very similar to Prim’s algorithm for minimum spanning trees. Let $G = (V, E)$ be a weighted directed graph. Note: If G is undirected, just replace each undirected edge by two directed edges with opposite directions with the same weight. For convenience, we also assume that all vertices are reachable from s, though this assumption is not necessary.
Dijkstra’s algorithm maintains a set of vertices S, with $S = \{s\}$ at the beginning. For each round, we pick a vertex from $V - S$ and add it to S. When a vertex v is picked and added into S, the distance $\delta(s, v)$ is computed correctly and stored in $v.d$. Since we assumed that all vertices are reachable from s, the algorithm stops when $S = V$. In addition to $v.d$, each vertex $v \in V$ also has an attribute $v.\pi$, a pointer to another vertex in the graph. Edges from

$$E_\pi = \{(v.\pi, v) : v \in V - \{s\}\} \subseteq E$$

form a shortest-paths tree: For every $v \in V - \{s\}$, the unique path from s to v in E_π must be a shortest path from s to v. In the class, we only focus on the $v.d$ attribute.
Before describing the algorithm, we present the key lemma to Dijkstra’s algorithm. Let S be a set of vertices with $s \in S$. We say p is an S-path from s to $v \in V - S$ if all vertices of p lie in S except v itself (so all the edges on the path p have both endpoints in S except the last edge (u, v), with $u \in S$ and $v \in V - S$.) Quick question: If we know the distance $\delta(s, u)$ for all $u \in S$, how can we compute the weight of the shortest S-path from s to $v \in V - S$? We denote the latter by $\delta(s, S, v)$. Use the following formula:

$$\delta(s, S, v) = \min_{u \in S} \{ \delta(s, u) + w(u, v) \}$$ (1)

Prove its correctness. Here comes the lemma:
Lemma

Let S be a set of vertices with $s \in S$. If $v \in V - S$ has the minimum $\delta(s, S, v)$ among all vertices $v \in V - S$, then we must have $\delta(s, v) = \delta(s, S, v)$.

Assume this is not the case, then we must have $\delta(s, v) < \delta(s, S, v)$ because $\delta(s, v) \leq \delta(s, S, v)$ by definition. This means there is a shortest path p from s to v such that

$$w(p) < \delta(s, S, v)$$
Let y denote the first vertex not in S on the path p. If $y = v$ then p is indeed an S-path and thus,

$$w(p) \geq \delta(s, S, v)$$

contradiction. So $y \neq v$ is a predecessor of v in p. Let p' denote the subpath of p from s to y, then p' is clearly an S-path (why?). As a result, we have

$$\delta(s, S, y) \leq w(p') \leq w(p) < \delta(s, S, v)$$

cannot contradicting with the assumption that v has the minimum $\delta(s, S, v)$ among all vertices in $V - S$ (since $y \in V - S$).
This suggests the following naive but correct algorithm: Start with $S = \{s\}$ and $s.d = 0$. At any time every $v \in S$ has $v.d = \delta(s, v)$. For each round (when $S \neq V$ yet), use formula (1) to compute $\delta(s, S, v)$ for each $v \in V$, which takes time $|V - S| \cdot |S|$. Find a vertex $v \in V$ that has the minimum $\delta(s, S, v)$. Set

$$v.d = \delta(s, S, v)$$

and add it into S. But ... too slow!
Instead, we keep the following invariant: Prior to each round

1. For every \(u \in S \), \(u.d = \delta(s, u) \). For every \(v \in S \),

\[
 v.d = \delta(s, S, v)
\]

which is set to be \(+\infty\) if currently there is no \(S \)-path from \(s \) to \(v \) (may happen even if all vertices are reachable from \(s \)).

2. We also maintain a priority queue \(Q \) of vertices in \(V - S \), sorted based on the \(v.d \) attribute. So to find a vertex \(v \in V \) with the minimum \(\delta(s, S, v) \), it suffices to make a call to Extract-Min. However (similar to Prim’s algorithm), after adding \(v \) to \(S \) (note that there is no need to change \(v.d \), why?) we need to update \(w.d \) for every \(w \) remains in \(Q \).
Now we present Dijkstra’s algorithm:

1. set \(S = \{s\} \), \(s.d = 0 \) and \(s.\pi = \text{nil} \) (root)
2. for each \(v \in V - \{s\} \) (check that the invariant holds)
 - if \((s, v) \in E\): set \(v.d = w(s, v) \) and \(v.\pi = s \)
 - else: set \(v.d = +\infty \) and \(v.\pi = \text{nil} \)
3. Priority-Queue-Init \((Q, V - \{s\})\)
4. while \(Q \neq \emptyset \) (\(S \neq V \)) do
 - \(u = \text{Extract-Min}(Q) \)
 - for each \(v \in \text{adj}[u] \) do
 - if \(v \in Q \) and \(v.d > u.d + w(u, v) \) then
 - \(\text{Decrease-Key}(Q, v, u.d + w(u, v)) \) and \(v.\pi = u \)
To prove its correctness, it suffices to show that after adding \(u \) to \(S \) at the beginning a while-loop, by the end of the loop we still have \(v.d = \delta(s, S, v) \) for every vertex \(v \) in \(Q \). Running time of Dijkstra: Initialization of \(Q \) plus \(n - 1 \) Extract-Min plus \(m \) Decrease-Key. If we use Heap (or Red-Black tree) to implement \(Q \): \(O(m \lg n) \). By using a Fibonacci heap (Chapter 19), the total running time is \(O(m + n \lg n) \).
Now we work on the more general case when the weights can be negative. Again, we assume that all vertices $v \in V$ are reachable from s. The trouble of having negative weights is that sometimes $\delta(s, v)$ is not well defined. How can this happen? It happens when there is a cycle c in G such that the total weight $w(c)$ of edges in c is negative. For example, if $(s, a), (a, b), (b, c), (c, a), (a, d) \in E$ and the weight of the cycle $abca$ is negative, then we can go from s to d by cycling around $abca$ for as many times as we want so that the total weight of the path approaches $-\infty$. So no matter what path from s to d you pick, I can always find you in this (kind of stupid) way a path with even smaller total weight. Show that if there is no negative-weight cycle in G, then $\delta(s, v)$ is well-defined and there always exists a shortest “simple” path from s to v.
The Bellman-Ford algorithm solves the single-source shortest-paths problem when the weights may be negative. (See the details below.) The input is a weighted directed graph $G = (V, E)$ in which the weights may be negative, as well as a source vertex $s \in V$. Output: Either indicate that G has a negative-weight cycle; or if no negative-weight cycle exists in G (for which case $\delta(s, v)$ is well-defined for all $v \in V$), compute $\delta(s, v)$ and a shortest path from s to v for all $v \in V$. For the latter, again we mean that E_π forms a shortest-paths tree.
set \(s.d = 0 \) and \(s.\pi = \text{nil} \) (root)

for each \(v \in V - \{s\} \) do

set \(v.d = \infty \) and \(v.\pi = \text{nil} \)

repeat \(n - 1 \) times

for each edge \((u, v) \in E\) do

if \(v.d > u.d + w(u, v) \) then

set \(v.d = u.d + w(u, v) \) and \(v.\pi = u \)

for each edge \((u, v) \in E\) do

if \(v.d > u.d + w(u, v) \) then

return “negative cycle”

return “no reachable negative cycle”
The running time of Bellman-Ford is $\Theta(nm)$. Now we prove its correctness. First of all, if there is a negative-weight cycle, say

$$c = \langle v_0, v_1, \ldots, v_k, v_0 \rangle$$

in G, then the algorithm must return “negative cycle”. To see this, assume for contradiction that line 10 is not executed.
Because $(v_0, v_1), (v_1, v_2), \ldots, (v_k, v_0) \in E$, we have

\[v_1.d \leq v_0.d + w(v_0, v_1) \]
\[v_2.d \leq v_1.d + w(v_1, v_2) \]
\[\vdots \]
\[v_0.d \leq v_k.d + w(v_k, v_0) \]

Summing up all these $k + 1$ inequalities gives us

\[0 \leq w(v_0, v_1) + w(v_1, v_2) + \cdots + w(v_k, v_0) \]

contradicting with our assumption of c being a negative cycle.
Finally we show that if there is no negative-weight cycle in G, then $v.d = \delta(s, v)$ for all v before the first for-loop of line 8; and the algorithm outputs “no reachable negative cycle” by the end. We prove the second part first. If $v.d = \delta(s, v)$ for all $v \in V$, then for any $(u, v) \in E$, we have the following simple inequality

$$\delta(s, v) \leq \delta(s, u) + w(u, v)$$

(why?) and thus,

$$v.d \leq u.d + w(u, v)$$

for all $(u, v) \in E$. So it outputs “no reachable negative cycle”.
We prove $v.d = \delta(s, v)$ for all $v \in V$. First, it is easy to prove, using induction, that $v.d \geq \delta(s, v)$ during any time of the algorithm. Also $v.d$ is nonincreasing during the execution of Bellman-Ford because we only change $v.d$ on line 7, which only makes it smaller. These two properties imply that if $v.d$ is set to be $\delta(s, v)$ at some time during the execution, then it remains to be $\delta(s, v)$ ever after! Now we start the proof.
Pick any vertex $v \in V$. We show that $v.d = \delta(s, v)$ by the end of the $(n - 1)$ iterations of line 4. If there is no negative-weight cycle, then $\delta(s, v)$ is well-defined and there is a “simple” path p from s to v with $w(p) = \delta(s, v)$. Because

$$p = \langle v_0, v_1, \ldots, v_{k-1}, v_k \rangle,$$

where $s = v_0$ and $v = v_k$ is simple, we have $k \leq n - 1$. It suffice to prove by induction:

By the end of the ith iteration of line 4, $v_i.d = \delta(s, v_i)$.

Because it implies that by the end of the $(k \leq n - 1)$th iteration, we have $v.d = \delta(s, v)$ and it remains so ever after.
The basis is trivial. Induction step: Assume that by the end of the
\((i - 1)\)th iteration (or at the beginning of the \(i\)th iteration), for
some \(i \leq k\), \(v_{i-1}.d = \delta(s, v_{i-1})\) and remains so ever after. We
show that by the end of the \(i\)th iteration, it must be the case that
\(v_i.d = \delta(s, v_i)\). This is because in the for-loop of line 5, after the
edge \((v_{i-1}, v_i) \in E\) is processed, we must have

\[
v_i.d \leq v_{i-1}.d + w(v_{i-1}, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i) = \delta(s, v_i)
\]

The second equation uses \(v_{i-1}.d = \delta(s, v_{i-1})\) by the inductive
hypothesis. The last equation uses the * subpath property *.
Read Section 24.2: How to solve the single-source shortest paths problem efficiently when G is a DAG:

Topological sort + dynamic programming